亚冠

核电池助力嫦娥长夜月夜生存

2019-08-15 19:52:02来源:励志吧0次阅读

  北京时间201 年12月2日1时 0分,我国在西昌卫星发射中心用 长征三号乙 运载火箭,成功将 嫦娥三号 探测器发射升空。据了解, 嫦娥三号 奔月飞行约需112小时,预计探测器将于12月6日飞行至月球附近,实施近月制动,进入100 100公里的环月圆轨道。

  嫦娥三号 将首次实现月球软着陆和月面巡视勘察。嫦娥三号任务面临7大难点,包括地面试验验证,多窗口、窄宽度准时发射,月面软着陆,两器分离,月地间遥操作,月面生存,测控通信等7大关键技术。这 七道坎 中最难之一:月面生存--夜间供电。

  首次携带核电源夜间供电

  月球一天相当于地球27天,1 天半是白天,1 天半是黑夜,白天温度高达150摄氏度,晚上则是零下180摄氏度,温差很大。所以,在1 天半的黑夜和低温下,仪器容易冻坏。

  如果要实现月夜生存,要保持仪器处于零上50摄氏度到零下40摄氏度之间,所以这次采用了多种方式来保障,包括携带核电源,这也是我国探测器首次使用核电源,它能在没有阳光照射情况下对仪器保持供电。

  核又称同位素电池,它是利用放射性同位素衰变放出载能粒子(如 粒子、 粒子和 射线)并将其能量转换为电能的装置。按提供的电压的高低,核电池可分为高压型(几百至几千V)和低压型(几十mV 1V 左右)两类按能量转换机制,它可分为直接转换式和间接转换式。更具体地讲,包括直接充电式核电池、气体电离式核电池、辐射伏特效应能量转换核电池、荧光体光电式核电池、热致光电式核电池、温差式核电池、热离子发射式核电池、电磁辐射能量转换核电池和热机转换核电池等。其中直接充电式核电池、气体电离式核电池属于直接转换式,应用较少。目前应用最广泛的是温差式核电池和热机转换核电池。核电池取得实质性进展始于20世纪50年代,由于其具有体积小、重量轻和寿命长的特点,而且其能量大小、速度不受外界环境的温度、化学反应、压力、电磁场等影响,因此,它可以在很大的温度范围和恶劣的环境中工作。

  据了解,当放射性物质衰变时,能够释放出带电粒子,如果正确利用的话,能够产生电流。通常不稳定(即具有放射性)的原子核会发生衰变现象,在放射出粒子及能量后可变得较为稳定。核电池正是利用放射性物质衰变会释放出能量的原理所制成的,此前已经有核电池应用于军事或者航空航天领域,但是体积往往很大。 过去在电池的研发过程中面临的重大难关之一,就是为了提高性能,电池大小往往比产品本身还大。由美国密苏里大学计算机工程系教授权载完(音)率领的研究组成功为 核电池 瘦身,研发出的 核电池 体积小但电力强。但权载完教授组研发出的核电池只是略大于1美分硬币(直径1.95厘米,厚1.55毫米),但电力是普通化学电池的100万倍。密苏里大学研究团队称他们研制小型核电池的目的是,为微型机电系统或者纳米级机电系统找到合适的能量来源。如何为微型或纳米级机电系统找到足够小的能量来源装置,同微型装置一样是一个热门研究领域。

  核电池的另一诱人之处是,提供电能的同位素工作时间非常长,甚至可能达到5000年。其缺点是有放射性污染,必须妥善防护;而且一旦电池装成后,不管是否使用,随着放射性源的衰变,电性能都要衰降。

  一般核电池在外形上与普通干电池相似,呈圆柱形。在圆柱的中心密封有放射性同位素源,其外面是热离子转换器或热电偶式的换能器。换能器的外层为防辐射的屏蔽层,最外面一层是金属筒外壳。

2006年杭州B2B/企业服务A轮企业
2017年广州社区上市后企业
2006年成都教育综合E轮企业
分享到: